Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (23)elektrické pole (70)elektrický proud (75)gravitační pole (80)hydromechanika (146)jaderná fyzika (44)kmitání (56)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (295)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (153)vlnění (51)

termodynamika

(10 bodů)2. Série 32. Ročníku - P. počasí na Matfyzu

Vytvořte co nejpřesnější předpověď počasí pro adresu V Holešovičkách 2, Praha 8, pro středu následující po uzávěrce série od 12:00 do 15:00. Jak se bude měnit počasí v průběhu celého dne? Smíte využít data o počasí nejpozději do soboty (včetně) předcházející uzávěrce. Součástí řešení je nutné svoji předpověď zdůvodnit, ocitovat zdroje a ideální je využít co nejvíce dat i zdrojů.

Karel poslouchal rádio na dálnici.

(3 body)6. Série 31. Ročníku - 2. horký drát

Vypočítejte proud, který by měl procházet kovovým vláknem s průměrem $d = 0{,}10 \mathrm{mm}$ nacházejícím se ve vakuové baňce, aby teplota vlákna měla stálou hodnotu $T = 2 600 K$. Předpokládejte, že povrch vlákna září jako ideální černé těleso. Zanedbejte ztráty tepla způsobené vedením tepla. Rezistivita materiálu vlákna při dané teplotě je $\rho = 2{,}5 \cdot 10^{-4} \mathrm{\Omega \cdot cm}$.

Nápověda. Použijte Stefanův-Boltzmannův zákon.

Danka rozmýšľala nad efektivitou žiaroviek.

(12 bodů)6. Série 31. Ročníku - E. nehrajte si se sirkami

Změřte rychlost hoření špejle v závislosti na úhlu naklonění vůči vodorovné rovině.

Protože benzín, který navrhoval Karel, byl už fakt moc.

(7 bodů)5. Série 31. Ročníku - 4. tepelné ztráty

Na jaké teplotě se ustálí vnitřní prostředí bytu v panelovém domě? Uvažujte, že náš byt sousedí delšími stěnami, stropem a podlahou s dalšími byty, ve kterých je udržována teplota $22 \mathrm{\C }$. Kratšími stěnami sousedí s okolím, kde je teplota $-5 \mathrm{\C }$. Vnitřní rozměry bytu jsou – výška $h = 2{,}5 \mathrm{m}$, šířka $a = 6 \mathrm{m}$ a délka $b = 10 \mathrm{m}$. Součinitel měrné teplotní vodivosti stěn je $\lambda = 0{,}75 \mathrm{W\cdot K^{-1}\cdot m^{-1}}$. Vnější stěny a stropy jsou tlusté $D\_{out} = 20 \mathrm{cm}$ a vnitřní $D\_{in} = 10 \mathrm{cm}$.

Jak se změní výsledek, pokud budovu zvenku zateplíme polystyrenem o tloušťce $d = 5 \mathrm{cm}$ s měrnou tepelnou vodivostí $\lambda ' = 0{,}04 \mathrm{W\cdot K^{-1}\cdot m^{-1}}$?

Karel přemýšlel nad tím, jak to funguje v paneláku…

(3 body)4. Série 31. Ročníku - 1. zmrzlina

Odhadněte, kolik gramů zmrzliny dokážeme vyrobit, pokud máme k dispozici $5 \mathrm{l}$ kapalného dusíku o teplotě $-196 \mathrm{\C }$ a neomezené množství mléka a smetany o pokojové teplotě $22 \mathrm{\C }$? Předpokládejme, že požadovaná zmrzlina se skládá jen z mléka a smetany (hmotnostně půl na půl) a měla by mít teplotu $-5 \mathrm{\C }$. Protože se tepelné kapacity mléka a smetany v tomto intervalu teplot značně mění, počítejte s jejich průměrnými hodnotami $c\_m = 3{,}45 \mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ pro mléko a $c\_s = 4{,}45 \mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ pro smetanu. Zbylé potřebné údaje si dohledejte na internetu.

Michal dostal chuť na zmrzlinu.

(3 body)1. Série 31. Ročníku - 1. kávu si omléčním

Kdy je nejvhodnější nalít do horké kávy chladné mléko, abychom ji mohli pít co nejdříve? Nepožadujeme přesný výpočet, ale podrobný slovní popis toho, jak káva chladne a jak byste postupovali.

Terka S. se zarazila při výroku: Už jsem Ti do toho kafe dala mléko, aby Ti to rychleji vystydlo.

(7 bodů)1. Série 31. Ročníku - 4. praská mi v láhvi

Co když si skoro prázdnou 1,5 litrovou PET láhev uzavřeme v dobře vytápěné kanceláři, dejme tomu na $t\_k = 26 \mathrm{\C }$, a pak vyjdeme vstříc novým zážitkům dolů ze schodů? Láhev začne praskat. Co má větší vliv? To, že se mění atmosférický tlak, jak scházíme 10 pater v budově, nebo to, že je na schodech, dejme tomu, $t \_s = 15 \mathrm{\C }$?

Karel šel na Matfyzu v Troji ze schodů.

(7 bodů)6. Série 30. Ročníku - 4. zastřel si svého potkana

Mirek by rád zastřelil potkana, kterého vídá na kolejích. Připravil si tedy jednoduchou vzduchovou pušku, kterou si můžeme modelovat jako trubku s konstantním průřezem $S=15\;\mathrm{mm}$ a délkou $l=30\;\mathrm{cm}$, která je na jedné straně uzavřená a na druhé otevřená. Do ní se chystá Mirek umístit náboj hmotnosti $m=2\;\mathrm{g}$, který trubku akorát utěsní, a to ve vzdálenosti $d=3\;\mathrm{cm}$ od uzavřeného konce. Náboj zde zatím nechá upevněný v klidu a natlakuje uzavřenou část trubky na určitý tlak $p_{0}$. Posléze náboj uvolní. Chce aby na konci ústí byla minimálně rychlost náboje $v=90\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Poraďte mu, na jaký tlak by musel vzduchovou pušku natlakovat, aby náboj vyšel s takovou rychlostí, pokud by plyn byl ideální, a diskutujte realističnost uspořádání. Předpokládejte, že náboj je uvolňován kvazistatickým adiabatickým dějem, kde $κ=7/5$, protože se jedná o dvouatomový plyn. Uvažujte, že z vnějšku působí na náboj atmosférický tlak $p_{a}=10^{5}\;\mathrm{Pa}$. Zanedbejte energetické ztráty vyvolané třením, odporem vzduchu a stlačováním plynu před nábojem.

Karel chtěl zjistit, jestli by řešitelé zvládli přijímací řízení na magisterské studium na Matfyz.

(9 bodů)6. Série 30. Ročníku - P. vypařující se asteroid

Umístíme hodně velký kus ledu, dejme tomu o průměru $1\; \mathrm{km}$, do blízkosti hvězdy podobné Slunci na kruhovou dráhu. Blízkost je tak velká, že rovnovážná teplota černého tělesa by v této vzdálenosti byla zhruba $30\; \mathrm{°C}$. Co se bude dít s takovým asteroidem a jeho drahou? Asteroid nemá vázanou rotaci.

Karel má rád astrofyziku, a tak zase něco navrhuje.

(8 bodů)4. Série 30. Ročníku - 4. plynový stroj

figure

Mějme tepelný stroj naplněný ideálním plynem složeným z dvouatomových molekul. Tento tepelný stroj vykonává kruhový děj $\mathrm{ABCDEFA}$ (viz obrázek), tedy skládá se z šesti dějů

  • $\mathrm{A} \longrightarrow \mathrm{B}$ - izobarické zahřátí ze stavu $4p_{0}$ a $V_{0}$ (teplotu v A označme jako $4T_{0}$) do stavu s objemem $3V_{0}$,
  • $\mathrm{B} \longrightarrow \mathrm{C}$ - izotermická expanze na objem $4V_{0}$,
  • $\mathrm{C} \longrightarrow \mathrm{D}$ - izochorické ochlazení na tlak $p_{0}$,
  • $\mathrm{D} \longrightarrow \mathrm{E}$ - izobarické ochlazení na objem $2V_{0}$,
  • $\mathrm{E} \longrightarrow \mathrm{F}$ - izotermická komprese na objem $V_{0}$,
  • $\mathrm{F} \longrightarrow \mathrm{A}$ - izochorické zahřátí na tlak $4p_{0}$. Určete zbývající stavové veličiny ve stavech $\mathrm{B}$, $\mathrm{C}$, $\mathrm{D}$, $\mathrm{E}$ a $\mathrm{F}$, maximální a minimální teplotu ideálního plynu v průběhu děje (v násobcích $T_{0}$), teplo přijaté či odevzdané plynem v jednotlivých dějích a účinnost tepelného stroje. Srovnejte tuto účinnost s účinností Carnotova stroje pracujícího se stejnými maximálními a minimálními teplotami. Pro jednoduchost uvažujte, že se nemění látkové množství plynu ve stroji a nedochází v něm k chemickým přeměnám.

Bonus: To samé proveďte pro jednodušší cyklický „čtvercový“ děj, tedy $\mathrm{ABCDA}$, kde plyn začíná ve stavu $p_{0}$, $V_{0}$ a $T_{0}$ a izochoricky se ohřeje na $4p_{0}$, izobaricky se zahřeje a rozepne na $4V_{0}$, izochoricky ochladí na $p_{0}$ a izobaricky se ochladí na $V_{0}$. Srovnejte účinnosti těchto dvou tepelných strojů a diskutujte, který je lepší.

Karlovi bylo střídavě teplo a zima.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz