Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (79)biofyzika (18)chemie (20)elektrické pole (67)elektrický proud (70)gravitační pole (76)hydromechanika (135)jaderná fyzika (40)kmitání (52)kvantová fyzika (26)magnetické pole (38)matematika (85)mechanika hmotného bodu (273)mechanika plynů (80)mechanika tuhého tělesa (206)molekulová fyzika (66)geometrická optika (73)vlnová optika (58)ostatní (154)relativistická fyzika (35)statistická fyzika (20)termodynamika (139)vlnění (47)

magnetické pole

(8 bodů)5. Série 35. Ročníku - 5. střídavý trojúhelník

figure

Postavíme si konečný Sierpińského trojúhelník stupně $N$ (tedy pro $N=1$ to bude jen trojúhelník, pro $N=2$ to budou už čtyři trojúhelníky atd.). Na spodních stranách budou vždy rezistory o odporu $R=150 \mathrm{\ohm }$, na levých stranách cívky o indukčnosti $L=0,4 \mathrm{H}$ a na zbylých stranách kondenzátory s kapacitou $C=20 \mathrm{\micro F}$. Mezi levým a pravým dolním rohem trojúhelníku měříme impedanci. Úhlová frekvence zdroje je $\omega = 50 \mathrm{s^{-1}}$. Najděte rekurentní vztahy, které tuto impedanci vyčíslí, a určete její hodnotu pro $N=7$. Nalezněnte rekurentní vztah pro situaci, kdybychom cívky a kondenzátory nahradili odpory $R$ a vyčíslete ji pro $N=15$.

Honza má rád fraktály.

(10 bodů)5. Série 35. Ročníku - S. stabilizujeme

  1. Jakou intenzitu musí mít laser o vlnové délce $351 \mathrm{nm}$, aby prostřednictvím ablace povrchu palivové peletky stabilizoval Rayleighovu-Taylorovu (RT) nestabilitu? Předpokládejte, že rozhraní ablátoru s DT ledem je vlnité s vlnovou délkou
  1. $0,2 \mathrm{\micro m}$,
  2. $5 \mathrm{\micro m}$.
  1. Jak se změní intenzita laseru, pokud na peletku aplikujeme ještě magnetické pole o velikosti $5 \mathrm{T}$?
  2. Co dalšího může napomoci minimalizovat RT nestabilitu?

(5 bodů)3. Série 35. Ročníku - 3. dva solenoidy

Mějme dvě cívky navinuté na stejné papírové ruličce. První má hustotu vinutí $10 \mathrm{cm^{-1}}$ a druhá $20 \mathrm{cm^{-1}}$. Rulička měří $40 \mathrm{cm}$ na délku a $1 \mathrm{cm}$ v průměru. Obě cívky jsou navinuté po celé její délce, přičemž druhá je navinutá přes první. Vzhledem k rozměrům ruličky můžeme zanedbat okrajové efekty a pracovat s cívkami jako s ideálními solenoidy. Uvažujme, že je zapojíme do obvodu sériově za sebou. Toto uspořádání můžeme pomyslně nahradit jedinou cívkou. Jaká by byla její indukčnost?

Jindra si hrál s ruličkami od ubrousků.

(10 bodů)6. Série 34. Ročníku - P. nebezpečnější korona

Dojde-li k výronu koronální hmoty ze Slunce, začne se tato hmota velkou rychlostí šířit prostorem. Někdy může zasáhnout Zemi a ovlivnit její magnetické pole. Odhadněte, jak velké elektrické proudy by mohl takový výron generovat na Zemi v síti elektrického vedení. Na jakých parametrech to závisí? Okomentujte, jaké by měla taková událost dopady na lidskou civilizaci.

Karel byl na konferenci a pak na stejné téma viděl video.

(10 bodů)6. Série 34. Ročníku - S. nabitá struna

Uvažujte napnutou strunu o délkové hustotě $\rho $, která je navíc rovnoměrně nabitá s délkovou nábojovou hustotou $\lambda $. Napětí ve struně je $T$. Struna se nachází v magnetickém poli o konstantní velikosti $B$, jež je ve směru struny v rovnovážné poloze. Vaším úkolem bude popsat několik aspektů kmitání této struny. Nejprve bude třeba sestrojit vlnovou rovnici. Zanedbejte indukční efekty (předpokládejte, že struna je perfektně izolující, a tedy nábojová hustota zůstává konstantní) a určete Lorentzovu sílu na jednotku délky pro malé oscilace struny v obou směrech kolmých na směr jejího napnutí. Tuto sílu použijte pro sestavení vlnové rovnice (ta dále obsahuje sílu plynoucí z napětí struny). Proveďte fourierovskou substituci a určete disperzní vztah v aproximaci malého pole $B$; konkrétně uvažujte členy do prvního řádu v $\beta = \frac {\lambda B}{k \sqrt {\rho T}} \ll 1$, kde $k$ je vlnové číslo. Určete dva polarizační vektory, tentokrát pouze do nultého řádu v $\beta $.

Nyní předpokládejte, že v určitém místě struny vytvoříme vlnu, která bude oscilovat pouze v jednom směru. V jaké vzdálenosti od původního bodu bude vlna stočená o devadesát stupňů?

Štěpán vzpomínal na třetí seriálovou úlohu.

(11 bodů)3. Série 34. Ročníku - P. vlnitý elektromagnetizmus

Co kdyby přírodní zákony nebyly v celém vesmíru stejné? Co kdyby se nějak měnily s polohou? Zaměřme se na elektromagnetickou interakci. Jak minimálně by se konstanta v Coulombově zákonu musela měnit se vzdáleností, abychom to mohli pozorovat? Jak bychom to pozorovali?

Karel se moc díval na YouTube.

(10 bodů)3. Série 34. Ročníku - S. elektron v poli

Uvažujte částici s nábojem $q$ a hmotností $m$, která je přichycená k pružině o tuhosti $k$, jejíž druhý konec je ukotven v jednom bodě. Předpokládejte, že pohyb částice je omezen na pohyb v jedné rovině. Celý systém je v magnetickém poli o velikosti $B_0$, které je kolmé na rovinu pohybu částice. Pokusíme se popsat možné oscilace této částice. Začněte sestavením rovnic pohybu pro tuto částici – nezapomňte započítat vliv magnetického pole.

Poté předpokládejte oscilující pohyb pro obě kartézské souřadnice částice, a proveďte Fourierovskou substituci, tj. nahraďte derivace násobky $i \omega $, kde $\omega $ je frekvence oscilací. Vyřešte výslednou soustavu rovnic tak, abyste získali poměr amplitud oscilací a frekvenci oscilací. Takto získané řešení je poměrně složité, a abychom mu lépe porozuměli, je vhodné přiblížit si ho v jednoduším případě. Předpokládejte tedy dále, že magnetické pole je velmi silné, tj. $\frac {q^2 B_0^2}{m^2} \gg \frac {k}{m}$. Určete přibližnou hodnotu (hodnoty) $\omega $ v této aproximaci, hledejte vždy nejvyšší nenulový řád přiblížení. Dále načrtněte pohyb (pohyby) částice v reálném prostoru při této aproximaci.

Štěpán chtěl vytvořit klasický diamagnet.

(10 bodů)2. Série 34. Ročníku - 5. detektor magnetických nestacionarit

Elektrický obvod znázorněný na obrázku může sloužit jako detektor nestacionárního magnetického pole. Jedná se o devět hran krychle tvořených elektrickým drátem. Elektrický odpor jedné hrany je $R$. Nachází-li se tato konstrukce v nestacionárním homogenním magnetickém poli, které má pro jednoduchost konstantní směr a jeho velikost se mění jen pomalu, tečou na vyznačených místech proudy $I_1$, $I_2$, $I_3$. Určete ze znalosti těchto proudů směr a časovou změnu velikosti magnetického pole v prostoru.

Vašek si říkal, že řešitelé budou mít z úlohy na elektromagnetickou indukci radost.

(7 bodů)5. Série 33. Ročníku - 4. podivná smyčka

Kruhová kovová smyčka s poloměrem $r = 15 \mathrm{cm}$ má hmotnost $m = 18 \mathrm{g }$. Pokud bychom ji rozstřihli, vznikl by drát s odporem $R = 3{,}5 \mathrm{m\Ohm }$. Na počátku je smyčka v klidu. V čase $t = 0$ zapneme homogenní magnetické pole kolmé k rovině smyčky s časovým průběhem $B(t) = \alpha t$, kde $\alpha = 1 \mathrm{mT\cdot s^{-1}}$ je konstanta. Smyčka se v důsledku přítomnosti nestacionárního magnetického pole začne nepatrně otáčet kolem své osy. Určete velikost úhlové rychlosti $\omega $ v čase $t = 0{,}1 \mathrm{s}$. Deformaci smyčky neuvažujte.

Vašek se rád zabývá bizarními jevy.

(8 bodů)3. Série 32. Ročníku - 4. destrukce smyčky

Představme si měděnou smyčku o poloměru $r$, která je určena rovinou, na níž je kolmé magnetické pole s magnetickou indukcí $B$. Maximální povolené tahové napětí ve smyčce je $\sigma _p$. Nyní začneme měnit magnetický tok ve smyčce z původní hodnoty $\Phi _0$ podle vzahu $\Phi (t) = \Phi _0 + \alpha t$, kde $\alpha $ je kladná konstanta. Určete, za jak dlouho dosáhneme ve smyčce maximálního tahového napětí.

Nápověda: Napěťovou sílu ve smyčce můžeme spočítat jako $T = |BIr|$.

Vítek vzpomíná na AP Physics.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner neuron-logo.jpg

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz