Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (84)biofyzika (18)chemie (23)elektrické pole (70)elektrický proud (75)gravitační pole (80)hydromechanika (145)jaderná fyzika (44)kmitání (56)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (295)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (151)vlnění (51)

termodynamika

6. Série 14. Ročníku - 3. galaxie

Začátkem století existoval kosmologický model vesmíru, podle kterého byl vesmír homogenní (v každém místě stejný) a izotropní (v každém směru stejný). Takový vesmír v sobě zahrnoval rovnoměrně rozmístěné galaxie. Předpokládejme, že všechny galaxie jsou co do množství vyzařovaného světla stejné. Spočtěte, kolikrát více galaxií uvidíme, jestliže se místo pouhým okem budeme koukat na oblohu triedrem, kterým lze pozorovat objekty s magnitudou až 8,5.

Magnitudou se v astronomii měří jasnost objektu. Čím větší magnituda, tím slabší objekt vidíme. Slunce má −27 magnitud, Měsíc v úplňku $-13^{mag}$, nejjasnější hvězdy $0^{mag}$ a nejslabší hvězdy viditelné pouhým okem mají 6 magnitud. Pomoci vám může Pogsonova rovnice, která porovnává magnitudy a pozorované intenzity dvou objektů:

$$m_{1}-m_{2}=-2,5\log{\frac{I_{1}}{I_{2}}}$$

Zamyslete se nad tím, jak se změní řešení, když budou galaxie vyzařovat různá množství světla.

Vymyslel Pavol Habuda.

4. Série 14. Ročníku - 3. měděný drát

Máme $50\, \jd{kg}$ mědi. Jaký nejdelší drát z tohoto množství materiálu lze vytvořit pro přenášení elektrického proudu $1 \jd{A}$, je-li okolní teplota $20\jd{^{\circ}C}$? (Tepelnou kapacitu okolního vzduchu a přírody považujte za nekonečnou.)

Úlohu navrhl Miroslav Panoš.

4. Série 14. Ročníku - S. draci

 

  • Vžijte se do role prince, který se chystá useknout drakovi hlavu.

Má dlouhý těžký meč. Jakým místem meče má vést úder, aby ho náraz nepraštil do ruky? Meč můžete považovat za homogenní, nebo navrhnout lepší model.

  • Vymyslete co nejreálnější model, jak draci chrlí oheň. (Slovem nejreálnější nemyslíme návrhy jako „Drak má v žaludku PB–láhev“ a podobné.)

Pokud nevěříte, že draci existují, můžete místo toho vymyslet, jak poznat směr rotace turbíny ve vysavači (aniž byste ho rozebírali).

  • Napište nám své návrhy na obsah dalších dílů seriálu.

Zadali autoři seriálu Lenka Zdeborová a Honza Houšťek.

2. Série 14. Ročníku - P. problémovka z vody

O prázdninách byli někteří organizatoři FYKOSu sjíždět Vltavu a při této příležitosti je napadlo několik problémků, se kterými by od vás potřebovali poradit.

  • Za jak dlouho doteče voda z Českého Krumlova do Prahy?
  • Na jakou stranu alumatky (hliníkové karimatky, která má z jedné strany hliníkovou fólii a z druhé izolační pěnu) je výhodné si lehnout?
  • Jak se v makarónech dělají díry?

Autor Lenka Zdeborová, inspirace: jak jinak než prázdninová Vltava.

5. Série 13. Ročníku - 2. supertermoska

Princip termosky je následující: Máme dvě souosé válcové stěny, které se vzájemně nedotýkají, mezi nimi je vyčerpán vzduch. Energie se zde může přenášet pouze zářením. Pro naše účely budeme stěny termosky považovat za absolutně černá tělesa (ve skutečnosti tomu tak nebývá). Teplotu vnitřní stěny označíme $T_{1}$, teplotu vnější $T_{2}$. Tyto teploty budeme dále považovat za konstantní. Odtok tepla (za jednotku času) v tomto jednoduchém případě nechť je $Q_{0}$. Vlastnosti termosky však můžeme vylepšit, vložíme-li mezi stěny ještě jednu dokonale vodivou (absolutně černou) válcovou desku. Určete, jak se změní odtok tepla po ustálení teploty vložené desky. Ve vylepšování můžeme pokračovat… Spočtěte, jak se odtok tepla změní, vložíme-li $n$ vzájemně se nedotýkajících válcových desek. (Vzdálenosti krajních desek jsou malé oproti rozměrům termosky, velikosti jejich povrchů můžeme tedy považovat za stejné.)

5. Série 13. Ročníku - P. zamrzání rybníku

Odhadněte, za jak dlouho naroste led na rybníce z deseti centimetrů na dvacet. Teplota vzduchu je stále pět stupňů pod bodem mrazu. Potřebné konstanty naleznete v tabulkách.

1. Série 13. Ročníku - 3. zahřívání

Do nádoby s vodou dáme ponorný ohřívač a zapneme jej do zásuvky. Závislost teploty na čase po zapnutí ohřívače vidíme na grafu na obrázku. Poté, co teplota dosáhne $60 ^ {\circ}\,\jd{C}$ (trvalo to tři minuty), ohřívač vypneme. S pomocí grafu odhadněte, za jak dlouho nádoba s vodou vychladne na $50 ^{\circ}\,\jd{C}$. A za jak dlouho na $30 ^{\circ}\,\jd{C}$? Tepelnou kapacitu a tepelnou setrvačnost ohřívače neuvažujte.

1. Série 13. Ročníku - E. měrná tepelná kapacita

Vaším úkolem je změřit měrnou tepelnou kapacitu vody. Metodu měření si můžete vybrat sami, lze například měřit rychlost vzrůstu teploty vody ohřívané ponorným vařičem nebo měřit změnu teploty vody při ponoření tělesa o známé teplotě a tepelné kapacitě, vaší vynalézavosti se však meze nekladou.

1. Série 13. Ročníku - S. pásová teorie

Určete, kolikrát méně elektronů je ve vodivostním pásu typického izolantu (šířka zakázaného pásu je $10 \,\jd{eV}$), než v případě polovodiče (šířka zakázaného pásu křemíku je $1,12 \,\jd{eV}$) při pokojové teplotě. Předpokládejte, že v limitě vysokých teplot se koncentrace vyrovnají. Jak se tento poměr změní při zahřátí izolantu i polovodiče na teplotu $500 \,\jd{K}$?

4. Série 12. Ročníku - 1. hokejista

Hokejista jede po ledě jen po jedné brusli. Led, který má hustotu $0,9\,\jd{ g\cdot cm^{-3}}$ pod bruslí taje do hloubky $h=0,03\;\mathrm{mm}$. Nůž brusle je široký $d=2\;\mathrm{mm}$. Skupenské teplo tání ledu je $λ=3,3\cdot 10^{5}\, \jd{J.kg^{-1}}$. Spočtěte velikost třecí síly mezi bruslí a ledem. Tepelnou vodivost ledu zanedbejte.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz