Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (23)elektrické pole (70)elektrický proud (75)gravitační pole (80)hydromechanika (146)jaderná fyzika (44)kmitání (56)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (295)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (153)vlnění (51)

ostatní

(10 bodů)2. Série 30. Ročníku - S. odhadnutelná

 

  • Zkuste vlastními slovy popsat, k čemu slouží intervalový odhad střední hodnoty v normálním rozdělení a uveďte jeho fyzikální interpretaci (postačí vlastními slovy popsat následující: fyzikální interpretace odhadu střední hodnoty, rozdíl mezi (bodovým) odhadem a intervalovým odhadem, nejdůležitější vlastnost intervalového odhadu, metoda zkráceného zápisu intervalového odhadu, nejistota měření). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru mereni1.csv najdete naměřené hodnoty určité fyzikální veličiny (uvažujte nejistotu typu B $s_\mathrm{B} = 0,\! 1$ ). Zkonstruujte z těchto dat bodový i intervalový odhad měřené fyzikální veličiny a krátce interpretujte jejich význam.
  • Předpokládejme, že měříme určitou fyzikální veličinu a víme, že vlivem použité metody měření budou mít naměřená data rozptyl rovný konstantě $c$ (nejistotu typu B neuvažujte). Kolik musíme přibližně provést měření, abychom dosáhli nejistoty měření menší než $s$?
  • V přiloženém datovém souboru mereni2.csv najdete data měření stejné fyzikální veličiny dvěma různými způsoby (nejistotu typu B neuvažujte). U které metody byla použitá měřící aparatura přesnější? Který způsob měření dal přesnější výsledek měření? U obou otázek své závěry i stručně zdůvodněte.

Bonus: Zkuste odvodit, že v normálním rozdělení je výběrový rozptyl nestranným odhadem skutečného rozptylu (tj. střední hodnota výběrového rozptylu je rovna skutečnému rozptylu).

Pro řešení tohoto úkolu můžete použít libovolné zdroje (pokud je budete řádně citovat). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal si dal v zadání pozor na hrubé chyby.

(5 bodů)1. Série 30. Ročníku - 3. hopsa hejsa

Mějme ideální hopík dokonalé odrazivosti a zanedbatelných rozměrů. Tento hopík hodíme z nekonečných schodů, kde jeden schod má výšku $h$ a délku $l$. Odrazy probíhají beze tření. Popište závislost nejvyšší dosažené výšky (měřeno od prvního schodu) hopíku po $n$-tém odrazu na počátečních parametrech.

Lubošek potkal v městské dopravě Mikuláše.

(7 bodů)1. Série 30. Ročníku - 5. na procházce

Katka si vyšla ráno před přednáškou na procházku, aby vyvenčila svého potkana. Vyšla s ním na rovný palouk, a když byl potkan ve vzdálenosti $x_{1}=50\; \mathrm{m}$ od ní, hodila mu míček rychlostí $v_{0}=25\; \mathrm{m}\cdot\mathrm{s}^{-1}$ pod úhlem $α_{0}$. V okamžiku výhozu potkan vyběhl směrem ke Katce rychlostí $v_{1} = 5\; \mathrm{m}\cdot\mathrm{s}^{-1}$. Nalezněte obecnou závislost úhlu $φ$ na čase, kde $φ(t)$ označuje úhel mezi vodorovnou rovinou a spojnicí potkana a míčku, a vykreslete tuto závislost do grafu. Na základě grafu určete, zda je možné, aby míček zakryl potkanovi Slunce, jenž se nachází ve výšce $φ_{0}=50\; \mathrm{°}$ přímo před potkanem. Počítejte s tíhovým zrychlením $g=9,\! 81\; \mathrm{m}\cdot \mathrm{s}^{-2}$ a pro zjednodušení uvažujte, že házíme z nulové výšky.

Mirek pozoroval, co se děje v trávě.

(12 bodů)1. Série 30. Ročníku - E. Pechschnitte

Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu vrstvy? K experimentálním výsledkům hledejte teoretická zdůvodnění. Pro vaše měření použijte toastový chléb.

Terka má stůl ve špatné výšce.

(10 bodů)1. Série 30. Ročníku - S. náhodná

 

  • Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná veličina, rozdělení náhodné veličiny, realizace náhodné veličiny, střední hodnota, rozptyl, histogram).
  • Vygenerujte grafy hustot pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot) všech v seriálu popsaných rozdělení náhodných veličin pro různé typy parametrů daného rozdělení a popište, jaký má změna parametru/ů vliv na tvar hustoty pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot).
  • Vygenerujte z přiložených dat histogramy a pokuste se určit, ze kterého rozdělení tato data pocházejí.
  • Definujme si náhodnou veličinu $X$ jako výsledek hodu „férovou“ šestistěnnou kostkou (všechna čísla padají se stejnou pravděpodobností). Určete rozdělení náhodné veličiny $X$ a dále spočítejte $\mathrm{E}X$ a $\mathrm{var}X$.

Bonus: Uveďte příklad dvou náhodných veličin, které mají stejnou střední hodnotu i stejný rozptyl, ale mají různá rozdělení.

Pro práci s daty a vykreslování grafů použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal stanovil zadání úlohy náhodně, snad nebude moc těžká.

(2 body)6. Série 29. Ročníku - 1. mám toho plnou hlavu

V roce 2015 byla udělena Nobelova cena za fyziku za experimentální prokázání oscilace neutrin. O neutrinech jste už jistě někdy slyšeli a možná víte, že s látkou interagují jen velmi slabě a proto dokáží bez zpomalení proletět Zemí a jinými velkými objekty. Zkuste za pomoci literatury a internetových zdrojů určit, kolik neutrin se v jednom okamžiku nachází v průměrném člověku. Nezapomeňte citovat zdroje!

Mirek měl pocit naplnění.

(4 body)6. Série 29. Ročníku - 3. jedeme z kopce

Autem o hmotnosti $M$ jedeme nahoru do kopce a dolů ze stejného kopce se sklonem $α$ stejnou rychlostí $v$ se zařazeným stejným převodovým stupněm, a tedy stejnými otáčkami motoru. Jaký je rozdíl tažného (do kopce) a brzdného (s kopce) výkonu motoru?

Napadlo Lukáše v kopci směrem na Rumburk.

(8 bodů)6. Série 29. Ročníku - E. zákeřný restituční koeficient

Pokud pustíte hopík či nějaký jiný míček na vhodný povrch, pak se začne odrážet. Při každém odrazu se disipuje (ztrácí do tepla, zvuku atd.) kinetická energie míčku a proto nevyskočí do takové výše, co původně. Definujme koeficient restituce jako poměr kinetických energií míčku po dopadu ku kinetické energii před dopadem. Závisí koeficient restituce na výšce, ze které míček dopadal? Vyberte si jeden vhodný míček a jeden vhodný povrch, na kterém proměřte závislost koeficientu restituce na výšce, ze které míček dopadl. Experiment náležitě popište a proveďte dostatečný počet měření. Nezapomeňte na vliv odporu vzduchu.

Karel zavzpomínal, jak ho jednou zamrzelo, že u ping-pongového míčku má velký vliv odpor vzduchu.

(6 bodů)6. Série 29. Ročníku - P. i-jablko

Vymyslete co nejvíce způsobů, jak sestrojit zařízení, které pozná, jakým směrem je natočeno vůči směru tíhového zrychlení a tuto informaci nějakým způsobem převede na elektrický signál. (Zařízení na způsob akcelerometru v chytrých telefonech.)

Napadlo Terku, když už se jí nechtěla učit analýza.

(7 bodů)5. Série 29. Ročníku - E. fotografická

Pomocí digitálního fotoaparátu změřte frekvenci střídavého proudu v síti. Postačí i chytrý telefon s vhodnou aplikací, která umožní nastavit přesnou hodnotu expozičního času.

Populární přednášky z fyziky na střední.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz