Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (79)biofyzika (18)chemie (20)elektrické pole (67)elektrický proud (70)gravitační pole (76)hydromechanika (135)jaderná fyzika (40)kmitání (52)kvantová fyzika (26)magnetické pole (38)matematika (85)mechanika hmotného bodu (273)mechanika plynů (80)mechanika tuhého tělesa (206)molekulová fyzika (66)geometrická optika (73)vlnová optika (58)ostatní (154)relativistická fyzika (35)statistická fyzika (20)termodynamika (139)vlnění (47)

molekulová fyzika

1. Série 8. Ročníku - 3. disk

Franta vytáhl dva stejné skleněné disky o průměru $10\; \textrm{cm}$ a tloušťce $4\; \textrm{cm}$ z vodní lázně a přiložil je k sobě (souose) jejich zcela vyhlazenými podstavami. Mezi nimi zůstane souvislá vrstvička vody o tloušťce $0.5\; \textrm{mm}$. Odhadněte (alespoň řádově) velikost síly, jakou musí vynaložit na odtržení disků od sebe, působí-li kolmo na jejich podstavy.

Poté disky osušil a znovu přiložil k sobě, přičemž k jejich dokonalému přilnutí mezi ně vložil list velmi tenkého hedvábného papíru. Jakou silou je potřeba působit nyní?

1. Série 8. Ročníku - E. bungee-jumping

Zajisté jste slyšeli o novém druhu zábavy lidí, kteří si potřebují dokázat, jak snadné je překonat vlastní strach. Z vlastní vůle skočit z výšky třeba $50\; \textrm{m}$ přivázán jen za nohy, není to lákavé? Vaším úkolem by mělo být: laboratorně zkoumat dynamiku tohoto nového sportu (kdy se asi dostane do olympijských her?) a na základě pokusů domácky provedených učinit závěry z toho plynoucí pro člověka přivázaného na takovém laně.

Nejprve si obstaráte kus gumy přiměřené délky. Pak můžete měřit:

  • závislost maximální hloubky $h$ na délce gumy $l$, do níž se závaží hmotnosti $m$ klesne
  • závislost hloubky $h$ na hmotnosti závaží $m$ pro dvě různé délky gumy $l_{1}$, $l_{2}$. Pozor abyste nepřekročili kritickou hmotnost $M_{K}$ z bodu $c$!
  • jaká je kritická hmotnost $M_{K}$ závaží, při němž se guma délky $l$ přetrhne (tento úkol předpokládá, že máte dost experimentálního materiálu a máte též vhodnou gumu – zachovává pružné vlastnosti až do přetržení)

Pro člověka vysícího na takovém laně má značný význam maximální zrychlení na něj působící po čas letu. Pokuste se toto zrychlení určit na základě změřených výsledků.

Přejeme Vám mnoho úspěchů při řešení a hodně zábavy s praskající gumičkou!

3. Série 7. Ročníku - 4. velikost atomu

Odhadněte velikost atomu, resp. molekuly látky, znáte-li koeficient povrchového napětí, hustotu a měrné výparné teplo. Porovnejte s tabelovanými hodnotami, např. pro rtuť či vodu.

1. Série 2. Ročníku - S. zeměměřiči

figure

Za devatero horami v Severním království pod vládou moudrého krále žijí dva národy – denní a noční lidé. Pro potřeby obou národů zde pracují dva velcí zeměměřiči. Denní zeměměřič měří vzdálenosti k východu od středu náměstí hlavního města v metrech (označme $x$) a vzdálenosti v severním směru, který je zde považován za posvátný, měří v severských mílích ($y$). Sever určuje podle magnetky kompasu. Noční zeměměřič určuje sever podle Polárky a vzdálenosti od středu náměstí k východu opět měří v metrech ($x′$) a k severu v severských mílích ($y′$). Jednoho dne chtěli porovnat své výsledky. Ocitli se však před velkým problémem. Vzhledem k tomu, že směr k Polárce není shodný se směrem k magnetickému pólu, tak se jejich údaje liší.

  • Pomozte jim a odvoďte vztahy mezi údaji $x$, $y$ a $x′$, $y′$.
  • Jak by vztahy mezi $x$, $y$ a $x′$, $y′$ vypadaly, kdyby oba zeměměřiči neměřili vzdálenosti ze stejného místa?

2. Série 1. Ročníku - P. balónek

figure

Model balónku

Jak moc můžete nafouknout pouťový balónek, než praskne? Předpokládejme, že balónek má tvar koule. V nenafouknutém (nebo velmi slabě nafouknutém) stavu nechť má poloměr $r_{0}$ (třeba $5\; \textrm{cm}$). Je z gumové blány, jejíž elastické vlastnosti i pevnost známe. Na obrázku je znázorněn kruh vystřižený z materiálu, z něhož je balónek. Tučně vyznačená délka obvodu je jednotková. Pro jednoduchost předpokládejme, že kdybychom kruh z této blány roztahovali na okraji (viz obrázek) tak, že by síla na jednotku délky obvodu kruhu byla $f$, byl by poloměr kruhu přímo úměrný $f$.

$R=R_{0}(1+αf)$. Maximální síla na jednotku délky (při níž materiál balónku praskne) nechť je $f_{max}$.

Předpokládejme dále, že na jedno nadechnutí naberete do plic objem $V_{fuk}$ vzduchu a ten pak fouknete do balónku. Kolikrát můžete do balónku fouknout, než praskne, a jaký bude mít rozměr? (Zkuste též odhadnout reálné hodnoty veličin v problému vystupujících a diskutovat oprávněnost předpokladů.)

1. Série 1. Ročníku - P. píst

V nádobě uzavřené pohyblivým pístem je ideální plyn. Píst stlačíme z jeho rovnovážné polohy o malou vzdálenost $x$ ($x$ je mnohem menší než výška nádoby $h)$ a pak jej pustíme. Následný děj považujeme za izotermický.

  • Ukažte, že píst bude vykonávat harmonické kmity kolem rovnovážné polohy a najděte jejich frekvenci. (Návod: Uvažte síly působící na píst a jejich analogii se silami působícími na hmotný bod zavěšený na pružině.)
  • Diskutujte oprávněnost předpokladu o izotermičnosti uvažovaného děje.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner neuron-logo.jpg

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz