Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (79)biofyzika (18)chemie (20)elektrické pole (67)elektrický proud (70)gravitační pole (76)hydromechanika (135)jaderná fyzika (40)kmitání (52)kvantová fyzika (26)magnetické pole (38)matematika (85)mechanika hmotného bodu (273)mechanika plynů (80)mechanika tuhého tělesa (206)molekulová fyzika (66)geometrická optika (73)vlnová optika (58)ostatní (154)relativistická fyzika (35)statistická fyzika (20)termodynamika (139)vlnění (47)

molekulová fyzika

2. Série 14. Ročníku - P. problémovka z vody

O prázdninách byli někteří organizatoři FYKOSu sjíždět Vltavu a při této příležitosti je napadlo několik problémků, se kterými by od vás potřebovali poradit.

  • Za jak dlouho doteče voda z Českého Krumlova do Prahy?
  • Na jakou stranu alumatky (hliníkové karimatky, která má z jedné strany hliníkovou fólii a z druhé izolační pěnu) je výhodné si lehnout?
  • Jak se v makarónech dělají díry?

Autor Lenka Zdeborová, inspirace: jak jinak než prázdninová Vltava.

1. Série 14. Ročníku - E. natahování špaget

Určete Youngův modul pružnosti v tahu uvařených špaget.

Bláznivý nápad Honzy Houšťka.

5. Série 12. Ročníku - 1. jehla na vodě

Určete maximální průměr ocelové jehly, která se ještě udrží na vodní hladině. Jehla je pokryta tenkým olejovým filmem, aby ji voda nesmáčela. Znáte hustotu oceli, vody a povrchové napětí vody. Pokud řešení problému závisí na délce jehly, pokládejte ji za známou a diskutujte její vliv.

1. Série 11. Ročníku - E. meření difúze ve sklenici vody

figure

Námětem první experimentální úlohy je jev difúze v kapalině. V kádince je přepážkou $P$ oddělena voda $V$ od roztoku elektrolytu $E$ (např. roztok kuchyňské či jiné soli), viz obrázek. V čase $t_{0}=0 \,\jd{s}$ přepážku odstraníte a ohmmetrem budete sledovat pokles elektrického odporu s časem. Po měření vysvětlete kvalitativně a kvantitativně pozorované změny.

1. Série 11. Ročníku - P. je narušen druhý termodynamický princip?

figure

Mějme aparaturu, jejíž schéma je na obrázku. Molekuly opouštějící nádobu s plynem $A$ (teplota $T_{A}$, střední kvadratická rychlost molekul $v_{A})$ tvoří molekulární svazek, jež dále prochází rychlostním filtrem $F$. Pouze částice s rychlostí $v_{F}$ proletí až do nádoby $B$. V prostoru mezi deskami filtru je vakuum, střední volná dráha molekul je větší než rozměr aparatury. Při vhodné volbě rychlosti $v_{F}$ ($v_{F}$ > $v_{A})$ bude teplota nádoby $B$ vyšší než nádoby $A$. Tudíž teplo z tělesa chladnějšího ($A)$ bude přecházet na těleso teplejší ($B)$, což je ve sporu s druhým principem termodynamiky. Vaším úkolem je vysvětlit (ne)správnost této úvahy.

6. Série 10. Ročníku - 1. kapalina mezi rovnoběžnými deskami

Odvoďte vztah pro výšku $h$ hladiny kapaliny mezi dvěma svislými nekonečně dlouhými rovinami, vzdálenými od sebe $d$, které jsou ponořeny do kapaliny. Povrchové napětí kapaliny je $σ$ a hustota je $ρ$.

3. Série 10. Ročníku - 4. cirkus

Artista padá na silně napnutou plachtu z výšky $h=1\;\mathrm{m}$. Jaký bude maximální průhyb plachty, je-li průhyb s artistou v klidu $Δy=2\;\mathrm{cm}?$ Považujte všechny výchylky za malé.

2. Série 10. Ročníku - 3. jarový tryskáč

figure

Matouš si vystřihl z tvrdého papíru lodičku, která je nakreslena na obr. 3 při pohledu shora. Do místa $A$ pak kápl kapičku jaru a loď spustil na vodní hladinu. Nemálo se podivil, když loď sama od sebe vyrazila prudce vpřed. Umíte pohyb lodi vysvětlit? Platí pro něj zákon zachováni energie?

1. Série 10. Ročníku - P. balónek

figure

Jak moc můžete nafouknout pouťový balónek, dokud nepraskne? Předpokládejte, že balónek má tvar koule. Nenafouknutý nechť má poloměr $r_{0}$. Je z gumové blány, která má v přiblížení následující elastické vlastnosti.

Roztahujeme-li kruh vyříznutý z této blány na okraji tak, že síla na jednotku délky obvodu je $f$, bude poloměr kruhu $r$ přímo úměrný $f$, $r=r_{0}(1+af)$, $a$ je konstanta úměrnosti (viz obrázek). Materiál praskne při maximální síle na jednotku délky $f_{max}$. Na jedno nadechnutí naberete do plic objem $V_{fuk}$ vzduchu a ten pak fouknete do balónku. Kolikrát můžete do balónku fouknout, než praskne, a jaký bude mít rozměr?

3. Série 8. Ročníku - E. grant strýčka Skrblíka

Vašim milovaným strýčkem vám byl zadán úkol zjistit, zda jeho památeční rodinná lžička jest skutečně z ryzího hliníku. Vaše experimentální vybavení je však poněkud skromné: kromě uvedené lžíce dostanete k dispozici závaží o známé hmotnosti, dlouhé pravítko, provázek a dva hřebíky, které můžete zatlouct do zárubně dveří. Navíc zde ještě stojí kbelík plný vody. Navrhněte, výpočty podložte a hlavně proveďte měření, při kterém co nejpřesněji s pomocí jmenovaných pomůcek určíte hustotu materiálu lžičky. Uskutečněte dostatečné množství měření a na základě alespoň nějakých kalkulací také odhadněte věrohodnost vámi obdrženého výsledku.

Nápověda: Pokuste se srovnat hmotnost lžíce a závaží zavěšováním na provázek, který jste (s mírným průvisem) natáhli mezi zárubní dveří.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner neuron-logo.jpg

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz