Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (79)biofyzika (18)chemie (20)elektrické pole (67)elektrický proud (70)gravitační pole (76)hydromechanika (135)jaderná fyzika (40)kmitání (52)kvantová fyzika (26)magnetické pole (38)matematika (85)mechanika hmotného bodu (273)mechanika plynů (80)mechanika tuhého tělesa (206)molekulová fyzika (66)geometrická optika (73)vlnová optika (58)ostatní (154)relativistická fyzika (35)statistická fyzika (20)termodynamika (139)vlnění (47)

molekulová fyzika

4. Série 16. Ročníku - E. od medvídka Pú

Výzkumný ústav medvídka Pú při AV ČR vypsal grant ve výši osmi (výjimečně více) bodů na změření závislosti viskozity medu na teplotě. Nezapomeňte uvést druh medu, který používáte.

4. Série 16. Ročníku - S. diferenciální rovnice

 

  • Organizátor FYKOSu vypil velmi rychle láhev tvrdého alkoholu. Alkohol se z žaludku vstřebává do krve rychlostí úměrnou jeho množství (v žaludku) s konstantou úměrnosti $\alpha$ a z krve je odbouráván játry podle stejného vztahu, tentokrát však s konstantou úměrnosti $\beta$. Sestavte diferenciální rovnici popisující tyto děje, určete závislost množství alkoholu v krvi na čase, určete čas, ve kterém je koncentrace maximální a vypočítejte ji.
  • Šnek plazící se rychlostí $1\,\jd{mm.s^{-1}}$ se v čase $t_{0}$ postaví na začátek gumového lana dlouhého $1\, \jd{m}$ a začne se plazit. Ve stejném okamžiku se lano začne napínat rychlostí $1 \,\jd{m.s^{-1}}$ (je nekonečně pružné takže nikdy nepraskne). Rozhodněte, zda šnek dosáhne konce lana v konečném čase a pokud ano, spočítejte, za jak dlouho se tak stane.
  • Takzvaná redukovaná Gaussova rovnice má tvar

$$xy''+(\gamma -x)y'-\alpha y = 0$$ Předpokládejte řešení ve tvaru Taylorova polynomu, určete vztah pro jeho koeficienty a vyšetřete asymptotické chování řešení (tj. určete jakou funkcí by se dalo vystihnout jeho chování pro velká $x$). Určete pro jaké hodnoty koeficientů $\gamma$ a $\alpha$ je konečný tento integrál $$\int ^{\infty} e^{x/2}F(\alpha, \gamma, x) \d x\,$$ kde $F(\alpha, \gamma, x)$ značí řešení Gaussovy rovnice (takzvaná redukovaná hypergeometrická funkce).

Poznámka: Pokud označíme $E=-\frac{1}{\alpha^{2}}$, dostaneme z poslední rovnice pro $E$ zajímavou podmínku. A pokud se vám při pohledu na ni začíná vybavovat vzorec pro možné hodnoty energie elektronu v atomu vodíku, pak vězte, že podobnost s vaším výsledkem není vůbec náhodná.

3. Série 16. Ročníku - 4. rychlá smrt

V modulu Apollo letí astronauti na Měsíc, skrz okno jim proletí meteorit a udělá v něm dírku o poloměru $r=1\;\jd{mm}$. Jak se bude měnit teplota a tlak v kabině o objemu $V=60\,\jd{m^{3}}$, pokud původní podmínky jsou $t= 20 \jd{^{\circ}C}$ a normální tlak. Jako bonus se pokuste odhadnout, za jak dlouho začnou mít astronauti vážné problémy.

3. Série 16. Ročníku - E. balónek

Změřte tlak vzduchu, který je při nafukování uvnitř balónku těsně před tím, než balónek praskne. Alespoň jednu metodu zrealizujte a několik dalších navrhněte. Nezapomeňte uvést typ použitých „balónků“.

2. Série 16. Ročníku - E. difúze

Jak je známo, kapka roztoku v čisté vodě začne difundovat a zvolna se rozplývat. Svůj experimentální um můžete prokázat tím, že naměříte závislost koncentrace roztoku v určitém bodě nádoby na čase. Můžete též proměřit, jak se změní tvar použité nádoby tak, že se roztok může šírit jen v jednom nebo dvou směrech (tj. nádoba bude buďto úzká a podlouhlá, nebo v ní bude jen tenká vrstva vody).

3. Série 15. Ročníku - 3. rampouch

Zimní sezóna se blíží, ale než vyrazíte lyžovat, zamyslete se nad tím, jaký tvar mají rampouchy rostoucí na otáčejícím se kole lyžařského vleku. Rovina kola svírá s vodorovnou rovinou úhel $\alpha$, kolo se otáčí úhlovou rychlostí $\omega $ a rampouch roste ve vzdálenosti $r$ od osy otáčení.

Úlohu vymyslel Pavel Augustinský.

5. Série 14. Ročníku - 2. dělo na lodi

Děla na bitevních lodích se nabíjejí následujícím způsobem: do hlavně se dá střela o hmotnosti $M$ a za ní určitý počet balíku s výbušninou (objem jednoho balíku je $V_{0})$, podle toho jak daleko chceme střílet. Kolikrát se zvětší dostřel takového děla, když nabijeme dvojnásobné množství výbušniny? Výbuch si představujte tak, že najednou se místo výbušniny objeví dvouatomový plyn o teplotě $T_{0}$ a tlaku $p_{0}$. Ráže děla je deset palců. Odpor vzduchu zanedbejte.

Nápad Karla Kouřila, když přemýšlel, co zadáme do FYKOSu.

4. Série 14. Ročníku - 1. vesmírná stříkačka

Představte si, že ve vakuu mimo gravitační pole stříkáme vodní paprsek. Kromě tohoto paprsku je zde kolmo (mimoběžně) k jeho původnímu směru umístěn nabitý nekonečný drát s délkovou hustotou náboje $\lambda$. Voda je stříkána z velmi velké vzdálenosti s počáteční rychlostí $v$. Vzdálenost přímky, ve které je stříkána voda (ve které se na začátku pohybuje vodní paprsek) a drátu je $d$. Spočtěte úhel, o který se odchýlí vodní paprsek od původního směru. Molekuly vody si představte jako elektrické dipóly, jejich vzájemné působení zanedbejte a také zanedbejte jejich moment setrvačnosti (tj. představte si, že všechna hmotnost molekuly je soustředěna uprostřed mezi náboji, které jsou nehmotné).

Zadal Karel Kouřil unešen odchylováním vody tekoucí z kohoutku pomocí nabitého hřebínku.

3. Série 14. Ročníku - 3. dnem vzhůru

Ve velké nádobě s vodou je částečně ponořena dnem vzhůru válcová sklenice. Hladina vody v nádobě i ve sklenici je stejná a je vzdálena $l=10\jd{ cm}$ ode dna sklenice. Teplota vzduchu je $t_{0}=20\jd{^{\circ}C}$ a atmosférický tlak je $p_{0}=100\jd{ kPa}$. O jakou výšku $h$ stoupne hladina vody ve sklenici, jestliže se teplota sníží o $\Delta t=10\jd{^{\circ}C}$ a tlak stoupne o $\Delta p=2,0\jd{ kPa}$?

Počítalo se na cvičení k přednášce Fyzika I, zadal Honza Houštěk.

3. Série 14. Ročníku - 4. výpar vody

Za jak dlouho se vypaří voda ze sklenice o výšce $h=10\,\jd{cm}$ za normálních podmínek? Předpokládejte, že vlhkost vzduchu těsně nad hladinou je neustále $99\%$

Úlohu navrhl Karel Kouřil.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner neuron-logo.jpg

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz