Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (84)biofyzika (18)chemie (23)elektrické pole (70)elektrický proud (75)gravitační pole (80)hydromechanika (145)jaderná fyzika (44)kmitání (56)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (295)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (151)vlnění (51)

molekulová fyzika

(10 bodů)4. Série 34. Ročníku - P. pták Fykosák na dovolené

Jak by fungovalo letectví na jiných planetách (s atmosférou)? Zajímejte se hlavně o proudová letadla. Které parametry by působily pozitivněji a které negativněji než na Zemi?

Karel byl v muzeu letectví v Košicích.

(12 bodů)3. Série 34. Ročníku - E. difuze

Určitě jste ve škole slyšeli o tepelném pohybu molekul, jako je difuze či Brownův pohyb. Změřte časovou závislost velikosti barevné skvrny ve vodě a vypočtěte difuzní konstantu. Proveďte měření pro několik různých teplot a sestrojte graf teplotní závislosti difuzní konstanty. Jak byste mohli zařídit, aby byla teplota v průběhu každého měření konstantní?

Káťa si užívá praktika i v době karantény.

(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky

  1. Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
  2. Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?

\setcounter {enumi}{2}

  1. Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
  2. Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
  3. Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.

Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.

Karel generoval problémy.

(6 bodů)6. Série 29. Ročníku - S. závěrečná

 

  • Najděte v tabulkách nebo na internetu, jak se změní entalpie a Gibbsova energie při reakci

$$2\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{H}_2\mathrm{O}\, ,$$ kde jde o přeměnu plynů na plyn a odehrává se při standardních podmínkách. Vypočítejte také, jak se změní entropie při takovéto reakci. Výsledky udávejte vztažené na jeden mol.

  • Pro fotonový plyn platí, že tok energie skrze plochu je dán vztahem

$$j=\frac{3}{4}\frac{k_{\mathrm{B}}^4 \pi^2}{45 \hbar^3 c^3}cT^4\, .$$ Dosaďte hodnoty konstant a porovnejte výsledek se Stefanovým-Boltzmannovým zákonem.

  • Vypočítejte vnitřní energii a Gibbsovu energii fotonového plynu. Dále pomocí vnitřní energie vypočítejte závislost teploty fotonového plynu na objemu při adiabatickém rozpínaní, tedy při procesu s $\delta Q=0$.

Nápověda: Zákon pro adiabatický děj s ideálním plynem jsme odvodili v druhém dílu seriálu.

  • Vezměme si fotonový plyn. Ukažte pro $\delta Q/T$, že pokud ho vyjádříme jako

$$\delta Q / T = f_{,T} \;\mathrm{d} T + f_{,V} \mathrm{d} V \, ,$$ tak funkce $f_{,T}$ a $f_{,V}$ splňují nutnou podmínku na existenci entropie, tedy že $$\frac{\partial f_{,T}(T, V)}{\partial V} = \frac{\partial f_{,V}(T, V)}{\partial T} $$

Janči se pokusil vymyslet jednodušší úlohu než posledně.

(2 body)5. Série 29. Ročníku - 1. už to teče

Tenký drát s odporem $R=100\;\mathrm{mΩ}$ a délkou $l=1\;\mathrm{m}$, který je připojen ke zdroji stejnosměrného napětí $U=3\;\mathrm{V}$, obsahuje ve svém objemu $N=10^{22}$ volných elektronů, kterými přispívá k toku elektrického proudu. Určete, jak velkou průměrnou (přesněji střední) rychlostí se elektrony v drátu pohybují.

Mirek už zase slyšel, že částice ve vodiči tečou rychlostí světla.

(2 body)5. Série 29. Ročníku - 2. mnohočásticová

Mějme nádobu, která je pomyslně rozdělena na dvě shodné disjunktní oblasti $\mathrm{A}$ a $\mathrm{B}$. V nádobě je $n$ částic, z nichž se každá nachází s pravděpodobností $50\; \%$ v části $\mathrm{A}$ a s pravděpodobností $50\; \%$ v části $\mathrm{B}$. Určete, s jakou pravděpodobností bude v části $\mathrm{A}$ $n_{\mathrm{A}}=0,\! 6 n$, resp. $n_{\mathrm{A}}=1+n/2$ částic. Řešte pro $n=10$ a $n=N_{\mathrm{A}}$, kde $N_{\mathrm{A}}≈6 \cdot 10^{23}$ je Avogadrova konstanta.

Mirek má rád zákon velkých čísel.

(6 bodů)5. Série 29. Ročníku - S. přirozeně proměnná

 

  • Použijte vztah pro entropii ideálního plynu $S(U,V,N)$ z řešení třetí seriálové úlohy

$$S(U,V,N) = \frac{s}{2}n R \ln{\left( \frac{U V^{\kappa -1}}{\frac{s}{2}R n^{\kappa} } \right)} nR s_0$$ a vztah pro změnu entropie $$\mathrm{d} S = \frac{1}{T}\mathrm{d} + U \frac{p}{T} \mathrm{d} V - \frac{\mu}{T} \mathrm{d} N$$ a vypočítejte chemický potenciál jako funkci $U$, $V$ a $N$. Upravte dále na funkci $T$, $p$ a $N$.
Pomůcka: Přečtěte si o derivacích a malých změnách v druhém díle seriálu. Nyní by už mělo být zřejmější, že koeficienty jako $1/T$ před $\mathrm{d}U$ spočítáte jako parciální derivaci $S(U,V,N)$ podle $U$. Nezapomeňte na užitečný vztah $\ln{(a/b)}=\ln{a}-\ln{b}$ a že $n=N/N_{A}$.
Bonus: Vyjádřete tímto způsobem i teplotu a tlak jako funkce $U$, $V$ a $N$. Eliminujte závislost tlaku na $U$, abyste dostali stavovou rovnici.

  • Je chemický potenciál ideálního plynu kladný, nebo záporný ($s_{0}$ považujte za zanedbatelné)?
  • Co se bude dít s plynem v pístu, pokud je plyn napojený na rezervoár s teplotou $T_{\mathrm{r}}?$ Píst se může volně pohybovat a z druhé strany na něj nic nepůsobí. Popište, co se bude dít, pokud dovolíme jen kvazistatické procesy. Kolik práce takto dokážeme extrahovat? Platí, že se takto minimalizuje volná energie?

Pomůcka: Na výpočet práce se vám může hodit vztah $$\int _{a}^{b} \frac{1}{x} \;\mathrm{d}x = \ln \frac{b}{a}.$$

  • Entalpii jsme definovali jako $H=U+pV$, Gibbsovu energii jako $G=U-TS+pV$. Jaké jsou přirozené proměnné těchto potenciálů? Jaké termodynamické veličiny dostaneme derivacemi těchto potenciálů podle svých přirozených proměnných?
  • Vypočítejte změnu grandkanonického potenciálu $\textrm{d}Ω$ z jeho definičního vztahu $Ω=F-μN$.

Janči se snažil představit si chemický potenciál.

(6 bodů)4. Série 29. Ročníku - S. pracovní

 

  • Z nerovnosti

$$\Delta S_{\mathrm{tot}} \geq 0 $$ ze seriálu vyjádřete $W$ a odvoďte tak nerovnost pro práci $$W \leq Q \left( 1 - \frac {T_\textrm{C}}{T_\textrm{H}} \right) \, .$$

  • Vypočítejte účinnost Carnotova cyklu bez použití entropie.

Pomůcka: Napište si 4 rovnice spojující 4 vrcholy Carnotova cyklu: $$p_1 V_1 = p_2 V_2, \;\; p_2 V_2^{\kappa} = p_3V_3^{\kappa}, \;\; p_3V_3 = p_4V_4, \;\; p_4V_4^{\kappa} = p_1V_1^{\kappa}$$ a vynásobte je všechny čtyři spolu. Po úpravě dostanete $$\frac {V_2}{V_1} = \frac {V_3}{V_4}\, .$$ Následně stačí použít vzorec na práci při izotermickém procesu: když přechází proces z objemu $V_{\textrm{A}}$ do $V_{\textrm{B}}$, práce vykonaná na plyn je $$nRT\;\ln{\left(\frac{V_\textrm{A}}{V_\textrm{B}}\right)}\, .$$ Teď už si stačí jen uvědomit, že práce při izotermickém ději je rovná teplu (se správným znaménkem) a vypočítat získanou práci (vzpomeňte si, že adiabatické procesy nepřispívají) a odebrané teplo. Na řešení stačí doplnit detaily tohoto postupu.

  • Minule jste pracovali s $pV$ a $Tp$ diagramem. Udělejte stejné cvičení s $TS$ diagramem, tedy nakreslete tam izotermický, izobarický, izochorický a adiabatický proces. Nakreslete do diagramu také cestu plynu v Carnotově cyklu a označte správně směr a vrcholy, aby souhlasily s obrázkem v seriálu.
  • V seriálu jsme se zmínili, že někdy je třeba dávat pozor na přijaté a odebrané teplo. Někdy se totiž to, jestli teplo přijímáme nebo odevzdáváme, mění v průběhu procesu. Jeden z příkladů je proces

$$p=p_0\;\mathrm{e}^{-\frac{V}{V_0}}\, ,$$ kde $p_{0}$ a $V_{0}$ jsou konstanty. Určete, pro jaké hodnoty $V$ (při rozpínání) proudí teplo do plynu a kdy z plynu.

(6 bodů)3. Série 29. Ročníku - S. entropická

 

  • Všechny stavy ideálního plynu umíme nakreslit jako digramy: $pV$ diagram, $pT$ diagram a tak dále. Na svislou osu se vynáší první veličina, na vodorovnou osu se vynáší druhá veličina. Každý bod tedy určuje dva parametry. Načrtněte do $pV$ diagramu 4 děje s ideálním plynem, které znáte. Udělejte to stejné pro $Tp$ diagram. Jak by vypadal $UT$ diagram? Vysvětlete, jak se nevhodnost těchto dvou proměnných jeví na tomto obrázku.
  • Jaké jednotky má entropie? Jaké jiné veličiny s těmito jednotkami znáte?
  • V seriálu jsme rozebrali případ nárůstu entropie, když plyn přijímal teplo. Proveďte podobnou úvahu pro plyn odevzdávající teplo.
  • Víte, že při adiabatickém ději se entropie nemění. Proto entropie jako funkce objemu a tlaku $S(p,V)$ může obsahovat jen takovou kombinaci objemu a tlaku, která se také při adiabatickém procesu nemění. Jaký je to výraz? Nakreslete na $pV$ diagram (svislá osa je $p$, vodorovná $V$) křivky, na kterých je entropie konstantní. Souhlasí výsledek této úvahy se vzorcem, který jsme pro entropii odvodili?
  • Vyjádřete entropii ideálního plynu jako funkci $S(p,V)$, $S(T,V)$ a $S(U,V)$.

(8 bodů)2. Série 29. Ročníku - E. je mi to šumák

Kupte si v lékárně šumivý celaskon nebo cokoliv, co se podává v tabletách určených k rozpuštění ve vodě. Změřte, jak dlouho trvá rozpuštění jedné tablety v závislosti na teplotě vody, do které ji hodíte. Diskutujte příčiny a vymyslete, proč je pozorovaná závislost taková.

Aleš Podolník umíral na rýmu.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz