Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (84)biofyzika (18)chemie (22)elektrické pole (69)elektrický proud (74)gravitační pole (79)hydromechanika (144)jaderná fyzika (43)kmitání (55)kvantová fyzika (31)magnetické pole (41)matematika (89)mechanika hmotného bodu (292)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (150)vlnění (51)

mechanika hmotného bodu

(6 bodů)2. Série 33. Ročníku - 3. Dančina (ne)rovnovážná destička

Destička tloušťky $t=1,0 \mathrm{mm}$ se šířkou $d =2,0 \mathrm{cm}$ se skládá ze dvou částí. První část o hustotě $\rho _1 =0,20 \cdot 10^{3} \mathrm{kg\cdot m^{-3}}$ má délku $l_1 = 10 \mathrm{cm}$, druhá část o hustotě $\rho _2 =2,2 \cdot 10^{3} \mathrm{kg\cdot m^{-3}}$ má délku $l_2 = 5,0 \mathrm{cm}$. Desku položíme na hladinu vody s hustotou $\rho \_v = 1{,}00 \cdot 10^{3} \mathrm{kg\cdot m^{-3}}$ a počkáme, až se ustálí v rovnovážné poloze. Jaký úhel bude svírat rovina desky s hladinou vody? Jaká část destičky zůstane trčet nad hladinou?

Danka si povídala s Peťem o mytí nádobí.

(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky

  1. Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
  2. Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?

\setcounter {enumi}{2}

  1. Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
  2. Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
  3. Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.

Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.

Karel generoval problémy.

(3 body)1. Série 33. Ročníku - 1. D1

Kamioňák se rozhodne na dálnici předjet autobus. Kamion jede o $2\, \%$ vyšší rychlostí než autobus. Když je kamion přesně vedle autobusu, začne na dálnici pravotočivá zatáčka, která způsobí, že po celou zatáčku jedou obě vozidla vedle sebe a za nimi se už začíná tvořit značná kolona. Určete poloměr zatáčky (vnitřního jízdního pruhu), je-li šířka jízdních pruhů $3{,}75 \mathrm{m}$.

Matěj nemá rád kamiony na dálnicích.

(10 bodů)1. Série 33. Ročníku - S. pomalý rozjezd

  1. Vyjádřete následující veličiny1) pomocí základních jednotek SI.
    1. $\jd {F}\cdot \Omega $, kde $\jd {F}$ je farad a $\Omega$ je ohm
    2. $\jd {N}\cdot \jd {Pa}$, kde $\jd {N}$ je newton a $\jd {Pa}$ je pascal
    3. $\dfrac {\jd {C}\cdot \jd {V}}{\jd {J}}$, kde $\jd {C}$ je coulomb, $\jd {V}$ je volt a $\jd {J}$ je joule
    4. $\dfrac {\jd {T}\cdot \jd {Wb}}{\jd {H}\cdot \jd {Sv}}$, kde $\jd {H}$ je henry, $\jd {Sv}$ sievert, $\jd {T}$ tesla a $\jd {Wb}$ weber
  2. V následujících tvrzeních nalezněte všechny chyby a popište, proč jde o chyby. (2 body)
    1. $s = vt^2/2 = 5{,}2 \cdot 1{,}2^2 /2 = 3{,}744 \mathrm{m}  . $
    2. $y\_m \sin \( 2 \pi \omega \) = 15 cm \cdot \sin \( 2 \cdot 3{,}141 \cdot 50 Hz \) \doteq 0 cm $
    3. Pro experimenty jsme použili úspěšně sadu gamabeta. Na základě měření radioaktivního rozpadu Uranu ve smolinci jsme zjistily, že náš vzorek má aktivitu přesně 532,24 bequerelů.
    4. $s = 1{,}23 \mathrm{m}$, $t = 2{,}7 \mathrm{s} \Rightarrow v = s/t \doteq 0{,}46 \mathrm{m\cdot s^{-1}}$, $m = 240 \mathrm{g}$, $E = mv^2/2 \doteq 25 \mathrm{J}$, $P = E/t \doteq 9{,}3 \mathrm{W}$
  3. Jakou silou působí vítr na korunu stromu? Víme, že to má souvislost s rychlostí větru $v$, průřezem stromu vystaveného větru $S$ a hustotou vzduchu $\rho $. Proveďte rozměrovou analýzu a na jejím základě určete vztah pro sílu.
  4. Sestavte podobnostní číslo odpovídající situaci, ve které protlačujeme kapalinu skrz charakteristickou délku $l$ pomocí gradientu tlaku $\dfrac {\d p}{\d x}$ (případně si tuto veličinu představte jednoduše jako změnu tlaku se vzdáleností $\dfrac {\Delta p}{\Delta x}$). Kapalina má hustotu $\rho $ a kinematickou viskozitu $\nu $. Určete, jaké všechny varianty tohoto podobnostního čísla existují. Jednu z nich si vyberte a pokuste se jí interpretovat.
  5. Bonus: Vymyslete co nejoriginálnější Planckovu jednotku (veličinu sestavenou z kombinace redukované Planckovy konstanty $\hbar $, gravitační konstanty $G$, rychlosti světla $c$, Boltzmannovy konstanty $k\_B$ a Coulombovy konstanty $k\_e$, přičemž nemusí obsahovat všechny). Popište její odvození a okomentujte její hodnotu. Nejzajímavější zmíníme v brožurce s řešeními.
1)
Bez ohledu na to, že dané součiny možná nedávají žádný rozumný fyzikální smysl.

Karel chce trhat rekordy v délce zadání.

(3 body)6. Série 32. Ročníku - 2. knihomol

figure

Vítek trávil čas v knihovně. Kvůli jeho neobratnosti jedna kniha spadla z regálu a on ji rychlým pohybem ruky stačil přimáčknout ke stěně. Na knihu působí silou $F$ pod úhlem $\alpha $, viz. obrázek. Kniha má hmotnost $M$ a součinitel smykového tření mezi knihou a zdí je $\mu $. Nalezněte podmínku pro sílu, při které kniha zůstane nehybná, a určete hraniční úhel $\alpha _{}$, po jehož překročení již není možné knihu udržet.

Vítek byl v pojízdné knihovně.

(6 bodů)6. Série 32. Ročníku - 3. dostřik

Hladina $98 \mathrm{\%}$ kyseliny sírové v lahvi sahá do výšky $h$. V určitém místě kolmo na stěnu nádoby vyvrtáme velmi malý otvor a kapalina začne vytékat ven. Do jaké maximální vzdálenosti od lahve může kyselina dostříknout ze všech možných poloh díry? Nádoba stojí na vodorovné rovině.

Nenechávejte vrtačky v Jáchymově dosahu!

(7 bodů)6. Série 32. Ročníku - 4. lano

Přes břevno fotbalové branky (vodorovnou válcovou tyč) přehodíme dlouhé lano. Když bude jeden konec lana právě třikrát delší než druhý (přičemž oba budou viset volně ve vzduchu), lano samovolně sklouzne. Nyní lano kolem břevna jednou obtočíme (čili bude „ohnuté“ o úhel $540\mathrm{\dg }$). Kolikrát teď může být jeden konec delší než druhý, aby lano nesklouzlo?

Matěj stahoval lezecké lano.

(9 bodů)6. Série 32. Ročníku - 5. gumová houpačka

Matěje začaly nudit klasické houpačky, které jsou na dětských hřištích a lze se na nich houpat pouze dopředu a dozadu. Proto vymyslel vlastní atrakci, na které se bude houpat nahoru a dolů. Mezi dva stejně vysoké body ve vzdálenosti $l$ natáhne gumu s klidovou délkou $l$. Následně se pomalu posadí přesně doprostřed gumy, přičemž se její střed vychýlí dolů o vzdálenost $h$. Nyní se velmi lehce odstrčí směrem nahoru a začne se houpat. Určete periodu malých kmitů.

Matěj přemýšlí, jak zranit děti na hřištích.

(12 bodů)6. Série 32. Ročníku - E. kluzká

Najděte dvě rovné plochy ze stejného materiálu a změřte, jaký je mezi nimi koeficient tření. Následně zjistěte, jak se tento koeficient změní, když mezi plochy dáte nějakou sypkou nebo kapalnou látku. Můžete použít vše od vody a oleje, přes med a roztavenou čokoládu až po mouku a písek. Měřte pro alespoň 4 různé látky. Hodně pozornosti věnujte diskuzi výsledků a především toho, které vlastnosti použitých látek měly na výsledek největší vliv.

Mikuláš se chce klouzat.

(10 bodů)6. Série 32. Ročníku - S. opakovacia

  1. Majme klasické matematické kyvadlo, ktoré vychýlime zo stabilnej polohy o $120\dg $. Dĺžka závesu kyvadla je po celý čas konštantá, záves je nehmotný a na jeho konci je upevnený hmotný bod s hmotnosťou $m$. Zostavte Lagrangeove rovnice prvého druhu pre kyvadlo a pomocou nich určte, kedy je sila pôsobiaca na vlákno kyvadla najväčšia.
  2. Vezmime klasické kyvadlo, rovnaké ako v prvej časti úlohy. K jeho hmotnému bodu pripevníme ďalšie kyvadlo s rovnakou zavesenou hmotnosťou ako aj rovnakou dĺžkou závesu. Zostavte lagrangián pre túto situáciu a určte aj Lagrangeove pohybové rovnice (2. druhu).
  3. Majme hmotný bod, ktorý je schopný sa voľne pohybovať v smere osy $x$. Ďalej majme matematické kyvadlo, ktorého záves je upevnený v tomto bode. Nájdite lagrangián tejto sústavy a pomocou Hamiltonovej variačnej metódy nájdite príslušné pohybové rovnice tak, že postupne budete Gateauxove derivácie podľa všetkých zovšeobecnených premenných pokladať rovné nule. Celkovo tak každá nulová Gateauxova derivácia dá jednu pohybovú rovnicu. Porovnajte, či ste touto metódou dostali rovnaké pohybové rovnice ako pri použití štandardného odvodenia Lagrangeových rovníc z lagrangiánu.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz