Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (84)biofyzika (18)chemie (22)elektrické pole (69)elektrický proud (74)gravitační pole (79)hydromechanika (144)jaderná fyzika (43)kmitání (55)kvantová fyzika (31)magnetické pole (41)matematika (89)mechanika hmotného bodu (292)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (150)vlnění (51)

hydromechanika

5. Série 20. Ročníku - 4. exhumace dárečku od Buffala

Buffalo Bill se už roky snaží polapit Jessieho Jamese, známého banditu. V městečku Clay County mu konečně přišel na stopu. Strhla se přestřelka. Buffalo si všiml sudu plného petroleje na vozíku mezi sebou a Jessiem. „Jak dostat sud k Jessiemu, abych ho mohl zapálit,“ rozmýšlí Bill.

Jessie prostřelil sud v 9/10 výšky a ze sudu začal stříkat petrolej. Buffalo se trefil přesně do poloviny sudu a střílí znovu. Vyřešte, s jakým počátečním zrychlením se bude pohybovat vozíček v závislosti na tom, kam se Bill trefí podruhé. Předpokládejte, že hybnost kulky je nulová, a tření zanedbejte.

Do jaké výšky by se musel Buffalo trefit, aby petrolej stříkal nejdále?

Znovu zadaná úloha V.1 z 18. ročníku, protože tehdejší řešení je špatně. Přílepek od Honzy Hradila.

4. Série 20. Ročníku - 1. nakupujeme minerálky

Určitě jste si v super(hyper)marketu všimli, že plastová láhev oblíbeného nápoje se při rozjetí pohyblivého pásu pokladny začne otáčet a k pokladní ji často musíte postrčit až rukou. Proč to tak je?

Zkuste analyzovat následující modelový případ. Láhev je položena na pás osou kolmo na směr pohybu pásu a láhev i pás jsou v klidu. Náhle se pás rozjede konstantní rychlostí $v=10\, \jd{cm\cdot s^{-1}}$. Jakou výslednou rychlostí se bude pohybovat láhev? Nejdříve analyzujte, jak se budou chovat různé idealizace – jako třeba tuhý válec. Pak si uvědomte, že láhev je plná nápoje, který se nerad otáčí. Pro jednoduchost uvažujte viskozitu nápoje za nulovou, pak se zamyslete nad tím, jak do hry vstoupí viskozita.

Úlohu vymyslel Jano Lalinský na nákupu v TESCU.

2. Série 20. Ročníku - 1. Čeňkova pila

Čeňkova pila se nachází na soutoku řek Vydry a Křemelné na Šumavě. Pojmenovaná je podle obchodníka s dřevem Čeňka Bubeníčka, který zde pilu v 19. století postavil. Na jejím místě nyní stojí vodní elektrárna, která je stále v provozu a patří mezi technické památky.

Vodní elektrárna využívá výškový rozdíl hladin nad a pod turbínou $10\, \rm{m}$, výkon elektrárny je $96\, \rm{kW}$. Voda je na turbínu přiváděna vantroky (Vantroky jsou dřevěná stavba – koryto obdélníkového průřezu, kterým je přiváděna voda na mlýnské kolo.), které jsou široké $1\, \rm{m}$, a voda v nich sahá do výšky $1,\!5\, \rm{m}$. Při pozorování proudící vody jsme odhadli, že uprostřed vantroků má proud vody rychlost $1\, \rm{m}\cdot \rm{s^{- 1}}$. Odhadněte, jaká je účinnost elektrárny.

Vymyslel Honza Prachař, když byl na výletě na Šumavě.

2. Série 20. Ročníku - 2. drtivý dopad

Pokuste se najít libovolný vztah mezi rychlostí meteoroidu dané hmotnosti těsně před dopadem na povrch Země a poloměrem vzniknuvšího kráteru.

Na problém narazil Honza Prachař při psaní textu Fyzikální olympiády.

2. Série 20. Ročníku - E. vlny na vodě

Na základě rozměrové analýzy najděte vztah pro rychlost vln na vodě. Teoretický vztah ověřte a najděte neznámé konstanty z měření rychlosti vln v závislosti na jejich vlnové délce. Uvědomte si, že existují dva typy vln – jedny jsou způsobené gravitací Země a druhé povrchovým napětím.

Úloha napadla Honzu Prachaře při čteni Feynmanoých přednášek z fyziky.

2. Série 20. Ročníku - P. třepání čajem

Vysvětlete, proč když zatřepeme sypaným čajem v plechovce, zůstanou větší kousky lístků spíše nahoře než dole. Řešení můžete obohatit vlastním pozorováním.

S úlohou přišel Petr Sýkora.

1. Série 20. Ročníku - P. výška stromů

Odhadněte výšku stromů na planetě. Uvažte všechna možná hlediska, která mohou výšku stromů ovlivnit.

Úlohu navrhla Zuzka Safernová.

5. Série 19. Ročníku - 1. veď svou bárku dál

figure

Pracovníci NASA objevili, že určité sedimenty rostlinného původu na měsíci Europa mají zajímavou štěpnost na velice pevné desky tvaru obdélníku a rovnoramenného trojúhelníku, takže z nich lze snadno a levně postavit loď výšky $h$, délky $d$ a šířky paluby $2a$ jako na obrázku 1. Kapitán vám dává za úkol zjistit, pro jaké hustoty tamějších oceánských vod bude plavba bezpečná.

Předpokládejte, že desky mají konstantní tloušťku a hustotu $ρ_{m}$, že loď je dutá a má palubu. (Diskutujte případ, že plavidlo není duté a celé má konstantní hustotu $ρ_{m}.)$ Nemusíte kapitánovi předložit jedinou výslednou relaci, spíše prakticky užitečný návod na propočty s uvedením všech potřebných vztahů; snažte se je napsat přehledně a úsporně a odůvodněte užití případné vhodné aproximace.

Vymyslel Pavel Brom při vzpomínce na historku o jedné nešťastně navržené lodi.

4. Série 19. Ročníku - 1. turnaj Balónků

figure

Kdesi v dalekém vesmíru za 1001 hvězdami a jednou černou dírou byla nebyla planeta Balónků. Tyto inteligentní duté bytosti každý rok pořádají soutěž „Čím výš, tím líp“.

Každý z balónků si přiváže provázek, aby bylo možné určit jeho výšku. Aby se mohli Balónci účastnit soutěže, musí mít všichni stejné parametry. Kupodivu nikdo zatím nikdy nevyhrál. Délková hustota provázku je 11 luftíků na špurgl, hustota atmosféry je 110101 luftíků na krychlový špurgl, poloměr každého z balónků je 10 špurglů, hmotnost Balónka je 10 luftíků. Při pádu tělesa v tíhovém poli na planetě Balónků se za každý temp jeho rychlost zvýší o 111 špurglů za temp. Určete, jakou maximální výšku Balónka hlavní rozhodčí soutěže naměří a jak se bude Balónek pohybovat po dosažení této výšky. Nezvednutá část provázku každého Balónka leží volně na zemi. Závody Balónků probíhají v malých výškách, kde je hustota atmosféry přibližně konstantní.

Nápověda: Každý balónek má maximálně jeden provázek.

Úlohu navrhl Petr Sýkora od Havránka.

4. Série 19. Ročníku - 3. Balónci na kolotoči

figure

V hlavním městě planety Balónků Medicinbaldorfu se jednou za debrecinský megatemp koná pouť. Hlavní atrakcí je speciální balónkovský kolotoč, který se Funík s Pískalem rozhodli navštívit.

Dutou tyčí délky $L$ je provlečen provázek délky $l>L$. Na jeden konec provázku se přivázal Funík, na druhý konec Pískal. Oba kamarádi by měli vážit stejně, Funík ale ke snídani snědl kousek rozemleté traverzy a je o trošku těžší. Poté se tyč začne točit kolem svislé osy na ní kolmé. Určete polohu osy tak, aby vodorovná vzdálenost mezi Balónky byla co největší.

Vymyslel Jirka a Kájínek špatně pochopil.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz